Analysis and use of textual definitions through a transformer neural network model and natural language processing

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorPonce Cruz, Pedro
dc.contributor.authorBaltazar Reyes, Germán Eduardo
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberMcDaniel, Troy
dc.contributor.committeememberBalderas Silva, David Christopher
dc.contributor.committeememberRojas Hernández, Mario
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Ciudad de Méxicoes_MX
dc.contributor.mentorLópez Caudana, Edgar Omar
dc.creatorBALTAZAR REYES, GERMAN EDUARDO; 852898
dc.date.accepted2021-12-06
dc.date.accessioned2022-03-01T23:22:31Z
dc.date.available2022-03-01T23:22:31Z
dc.date.issued2021-12-02
dc.descriptionhttps://orcid.org/0000-0001-7035-5286es_MX
dc.description.abstractThere is currently an information overload problem, where data is excessive, disorganized, and presented statically. These three problems are deeply related to the vocabulary used in each document since the usefulness of a document is directly related to the number of understood vocabulary. At the same time, there are multiple Machine Learning algorithms and applications that analyze the structure of written information. However, most implementations are focused on the bigger picture of text analysis, which is to understand the structure and use of complete sentences and how to create new documents as long as the originals. This problem directly affects the static presentation of data. For these past reasons, this proposal intends to evaluate the semantical similitude between a complete phrase or sentence and a single keyword, following the structure of a regular dictionary, where a descriptive sentence explains and shares the exact meaning of a single word. This model uses a GPT-2 Transformer neural network to interpret a descriptive input phrase and generate a new phrase that intends to speak about the same abstract concept, similar to a particular keyword. The validation of the generated text is in charge of a Universal Sentence Encoder network, which was finetuned for properly relating the semantical similitude between the total sum of words of a sentence and its corresponding keyword. The results demonstrated that the proposal could generate new phrases that resemble the general context of the descriptive input sentence and the ground truth keyword. At the same time, the validation of the generated text was able to assign a higher similarity score between these phrase-word pairs. Nevertheless, this process also showed that it is still needed deeper analysis to ponderate and separate the context of different pairs of textual inputs. In general, this proposal marks a new area of study for analyzing the abstract relationship of meaning between sentences and particular words and how a series of ordered vocables can be detected as similar to a single term, marking a different direction of text analysis than the one currently proposed and researched in most of the Natural Language Processing community.es_MX
dc.description.degreeDoctor of Philosophy in Engineering Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator1||12||1203||120304es_MX
dc.identifier.citationBaltazar Reyes, G. E.(2021). Analysis and Use of Textual Definitions through a Transformer Neural Network Model and Natural Language Processing [Tesis de doctorado sin publicar]. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.cvu852898es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-2358-2002es_MX
dc.identifier.urihttps://hdl.handle.net/11285/645423
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIALes_MX
dc.subject.keywordNatural Language Processinges_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordTransformeres_MX
dc.subject.keywordSemantic Analysises_MX
dc.subject.lcshTechnologyes_MX
dc.titleAnalysis and use of textual definitions through a transformer neural network model and natural language processinges_MX
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
211206 Thesis.pdf
Size:
8.14 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-octubre 2020.pdf
Size:
128.95 KB
Format:
Adobe Portable Document Format
Description:
Carta de autorización
Loading...
Thumbnail Image
Name:
211206 Autoria.pdf
Size:
54.92 KB
Format:
Adobe Portable Document Format
Description:
Carta autoría
Loading...
Thumbnail Image
Name:
211206 Firmas.pdf
Size:
210.76 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia