Closing the gap on affordable real-time very low resolution face recognition for automated video surveillance

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorGonzález Mendoza, Miguel
dc.contributor.authorLuévano García, Luis Santiago
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberOchoa Ruiz, Gilberto
dc.contributor.committeememberMéndez Vázquez, Heydi
dc.contributor.committeememberMartínez Díaz, Yoanna
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.contributor.mentorChang Fernández, Leonardo
dc.date.accepted2022-12-05
dc.date.accessioned2023-04-21T17:29:40Z
dc.date.available2023-04-21T17:29:40Z
dc.date.embargoenddate2023-11-26
dc.date.issued2022-12-05
dc.descriptionhttps://orcid.org/0000-0001-6451-9109es_MX
dc.description.abstractPublic and private security is a worldwide problem where efficient and automated video-surveillance technologies have a lot of potential. In an emerging country like Mexico, a functional real-time automated video-surveillance system will have a very positive social, economic, and technological impact. Proposing an open framework for face recognition at very low resolutions which public and private institutions could implement and take advantage of, will ultimately benefit our society and contribute to the state of the art in terms of efficacy and efficiency. Currently, efficient face recognition for automated video surveillance is not present within the reach of public institutions and much less so for the smallest business establishments, such as convenience stores and small offices. To make an impact in this area, the scientific problem that we are focusing on solving is the one of effectively and efficiently extracting robust facial features from Very Low Resolution face images from surveillance footage, to perform the appropriate subspace projection, and perform the posterior face identification using a dataset reference, in order to improve in efficiency terms. In this thesis, we propose solving this problem using our novel method, BinaryFaceNet, with state-of-the-art training methodology and advancements in the Binary Neural Network (BNN) and Lightweight Convolutional Neural Network (CNN) literature. The implementation of our method makes accurate and real-time face recognition available for affordable ARM-based embedded devices, with limited identification and verification performance penalties while achieving an inference performance of less than 90\% latency against state-of-the-art BNNs. We finally discuss the feasibility of implementing BNN technology on extremely limited hardware, the compromises made to achieve maximum efficiency, training stable ultra-compact binarized models, and provide future work directions to complement this proposal. Finally, in our concluding remarks, we summarize the research work done and the research outcomes during the tenure of this thesis project.es_MX
dc.description.degreeDoctor of Philosophy in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120304es_MX
dc.identifier.citationLuevano García, L. S.(2022). Closing the gap on affordable real-time very low resolution face recognition for automated video surveillance [Unpublished doctoral thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.cvu768608es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-5784-0826es_MX
dc.identifier.scopusid57215962348es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650411
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationConsejo Nacional de Ciencia y Tecnología (CONACyT)es_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.rightsembargoedAccesses_MX
dc.rights.embargoreasonPeriodo predeterminado para revisión de contenido susceptible de protección, patente o comercialización.es_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIALes_MX
dc.subject.keywordLow resolution face recognitiones_MX
dc.subject.keywordUnconstrained face recognitiones_MX
dc.subject.keywordEfficient face recognition modelses_MX
dc.subject.keywordBinary neural networkses_MX
dc.subject.lcshSciencees_MX
dc.titleClosing the gap on affordable real-time very low resolution face recognition for automated video surveillancees_MX
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
PhD_Thesis_LSLG_FINAL.pdf
Size:
11.43 MB
Format:
Adobe Portable Document Format
Description:
Thesis document
Loading...
Thumbnail Image
Name:
HojaFirmasCompleta_LuisSantiagoLuévanoGarcía_05dic22.pdf
Size:
398.68 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas completa
Loading...
Thumbnail Image
Name:
Formato de declaración de acuerdo para uso de obra[3674].pdf
Size:
191.38 KB
Format:
Adobe Portable Document Format
Description:
Formato de declaración de acuerdo para uso de obra

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia