Navigating the pitfalls: analyzing the behavior of LLMs as a coding assistant for computer science students - a systematic review of the literature

dc.contributor.affiliationhttps://ror.org/03ayjn504es_MX
dc.contributor.affiliationhttps://ror.org/04qr3zq92es_MX
dc.contributor.authorPirzado, Farman Ali
dc.contributor.authorAhmed, Awais
dc.contributor.authorMendoza Urdiales, Roman Alejandro
dc.contributor.authorTerashima Marin, Hugo
dc.date.accessioned2024-08-17T19:49:31Z
dc.date.available2024-08-17T19:49:31Z
dc.date.issued2024-08-14
dc.description.abstractIn recent years, large language models (LLMs) have been employed significantly in different domains of computing education. Nevertheless, these models have been focused on essential adherence to their integration as coding assistants in computing education. However, attention has been switched to thoroughly examining and analyzing LLM behavior, particularly in computing education for programming tasks such as code generation, code explanation, and programming error message explanation. Therefore, it becomes imperative to understand their behavior to examine potential pitfalls. This article addresses this gap systematically and details how different LLM-based coding chatbots, such as ChatGPT, Codex, Copilot, and others, react to various coding inputs within computing education. To achieve this objective, we collected and analyzed articles from 2021 to 2024, and 72 studies were thoroughly examined. These objectives include investigating the existing limitations and challenges associated with utilizing these systems for coding tasks, assessing their responses to prompts containing coding syntax, examining the impact of their output on student learning, and evaluating their performance as debugging tools. The findings of this review highlight that it is premature to incorporate these systems into computing education due to their limitations that may limit their effectiveness as comprehensive coding assistants for computer science students. These limitations include issues with handling prompts containing code snippets, potential negative impacts on student learning, limited debugging capabilities, and other ineffectiveness. The finding also reports multiple research directions that can be considered in future research related to LLMs in computing education.es_MX
dc.format.mediumTextoes_MX
dc.identificator4||58||5801es_MX
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2024.3443621
dc.identifier.journalIEEE Accesses_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-8291-9496es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-8299-0655es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-2888-156Xes_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-5320-0773es_MX
dc.identifier.urihttps://hdl.handle.net/11285/676868
dc.language.isoenges_MX
dc.publisherIEEEXplorees_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.relation.urlhttps://ieeexplore.ieee.org/document/10636140es_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTA::PEDAGOGÍA::TEORÍA Y MÉTODOS EDUCATIVOSes_MX
dc.subject.countryEstados Unidos de América / United Stateses_MX
dc.subject.keywordLarge Language Modelses_MX
dc.subject.keywordComputing Educationes_MX
dc.subject.keywordCode Generationes_MX
dc.subject.keywordCode Explanationes_MX
dc.subject.keywordProgramming Error Messages Explanationes_MX
dc.subject.lcshEducationes_MX
dc.titleNavigating the pitfalls: analyzing the behavior of LLMs as a coding assistant for computer science students - a systematic review of the literaturees_MX
dc.typeArtículo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Navigating.pdf
Size:
9.11 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.17 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia