A Deep Learning-based Algorithm for the Routing Problem in Vehicular Delay-Tolerant Networks

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorCárdenas Pérez, César Raúl
dc.contributor.authorHernández Jiménez, Roberto
dc.contributor.catalogerilquioes_MX
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.committeememberSossa Azuela, Juan Humberto
dc.contributor.committeememberBustamante Bello, Martín Rogelio
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.contributor.mentorMuñoz Rodríguez, David
dc.creatorCARDENAS PEREZ, CESAR RAUL; 35258es_MX
dc.creatorHERNANDEZ JIMENEZ, ROBERTO; 454135es_MX
dc.creatorGONZALEZ MENDOZA, MIGUEL; 123361es_MX
dc.creatorSOSSA AZUELA, JUAN HUMBERTO; 7036es_MX
dc.creatorBUSTAMANTE BELLO, MARTIN ROGELIO; 58810es_MX
dc.date.accessioned2021-08-10T23:36:19Z
dc.date.available2021-08-10T23:36:19Z
dc.date.created2020-06-11
dc.date.issued2020-06-11
dc.descriptionhttps://orcid.org/0000-0002-5446-6610es_MX
dc.description.abstractThe exponential growth of cities across the world has brought along important challenges such as waste management, pollution and overpopulation, and transportation administration. To mitigate these problems, the idea of Smart City was born, seeking to provide robust solutions integrating sensors and electronics, information technologies and communication networks. More particularly, to face transportation challenges, Intelligent Transportation Systems are a vital component in this quest. Intelligent Transportation Systems are intelligent systems that aim at providing the best solution to transportation-related matters, with the aid of information technologies, electrical and electronics and communication networks. In this context, communication networks are called Vehicular Networks, and they offer a communication framework for moving vehicles, road infrastructure and pedestrians. The extreme conditions of vehicular environments, nonetheless, make communication between high-speed moving nodes very difficult, so non-deterministic approaches are necessary to maximize the chances of packet delivery. In this work, this problem is addressed using Artificial Intelligence from a hybrid perspective, focusing on both the best next message to replicate and the best next hop in its path in the network. Furthermore, DLR+ is proposed, a router with a prioritized type of message scheduler and a routing algorithm based on Deep Learning. Simulations done to assess the router performance show important gains in terms of network overhead and hop count, while maintaining an acceptable packet delivery ratio and delivery delays, with respect to other popular routing protocols in vehicular networks.es_MX
dc.description.degreeDoctor en Ciencias de Ingenieríaes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3327||332703es_MX
dc.identifier.citationHernández-Jiménez, R. (2020). A Deep Learning-based Algorithm for the Routing Problem in Vehicular Delay-Tolerant Networks. [Doctoral dissertation]. Instituto Tecnológico y de Estudios Superiores de Monterrey, Estado de México, México. Recuperado de: https://hdl.handle.net/11285/637488es_MX
dc.identifier.cvu454135es_MX
dc.identifier.urihttps://hdl.handle.net/11285/637488
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS SISTEMAS DE TRANSPORTE::SISTEMAS DE TRÁNSITO URBANOes_MX
dc.subject.keywordVehicular Delay-Tolerant Networkses_MX
dc.subject.keywordDeep Learninges_MX
dc.subject.keywordVDTNes_MX
dc.subject.keywordNeural Networkes_MX
dc.subject.keywordRouting Algorithmes_MX
dc.subject.lcshTechnologyes_MX
dc.titleA Deep Learning-based Algorithm for the Routing Problem in Vehicular Delay-Tolerant Networkses_MX
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
Hernández_Tesis.pdf
Size:
2.71 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis - RITec.pdf
Size:
199.2 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Hernández_Hoja de firmas.pdf
Size:
380.94 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas
Loading...
Thumbnail Image
Name:
Hernández_Declaración de autoría.pdf
Size:
466.78 KB
Format:
Adobe Portable Document Format
Description:
Declaración de autoría

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia