Complex artificial intelligence models for energy sustainability in educational buildings

dc.contributor.affiliationhttps://ror.org/03ayjn504es_MX
dc.contributor.affiliationhttps://ror.org/03yez3163es_MX
dc.contributor.authorTariq, Rasikh
dc.contributor.authorMohammed, Awsan
dc.contributor.authorAlshibani, Adel
dc.contributor.authorRamírez Montoya, María Soledad
dc.date.accessioned2024-07-02T14:35:39Z
dc.date.available2024-07-02T14:35:39Z
dc.date.issued2024-07-01
dc.description.abstractEnergy consumption of constructed educational facilities significantly impacts economic, social and environment sustainable development. It contributes to approximately 37% of the carbon dioxide emissions associated with energy use and procedures. This paper aims to introduce a study that investigates several artificial intelligence‑based models to predict the energy consumption of the most important educational buildings; schools. These models include decision trees, K‑nearest neighbors, gradient boosting, and long‑term memory networks. The research also investigates the relationship between the input parameters and the yearly energy usage of educational buildings. It has been discovered that the school sizes and AC capacities are the most impact variable associated with higher energy consumption. While ’Type of School’ is less direct or weaker correlation with ’Annual Consumption’. The four developed models were evaluated and compared in training and testing stages. The Decision Tree model demonstrates strong performance on the training data with an average prediction error of about 3.58%. The K‑Nearest Neighbors model has significantly higher errors, with RMSE on training data as high as 38,429.4, which may be indicative of overfitting. In contrast, Gradient Boosting can almost perfectly predict the variations within the training dataset. The performance metrics suggest that some models manage this variability better than others, with Gradient Boosting and LSTM standing out in terms of their ability to handle diverse data ranges, from the minimum consumption of approximately 99,274.95 to the maximum of 683,191.8. This research underscores the importance of sustainable educational buildings not only as physical learning spaces but also as dynamic environments that contribute to informal educational processes. Sustainable buildings serve as real‑world examples of environmental stewardship, teaching students about energy efficiency and sustainability through their design and operation. By incorporating advanced AI‑driven tools to optimize energy consumption, educational facilities can become interactive learning hubs that encourage students to engage with concepts of sustainability in their everyday surroundings.es_MX
dc.format.mediumTextoes_MX
dc.identificator4||58||5801es_MX
dc.identifier.citationTariq, R., Mohammed, A., Alshibani, A. & Ramírez‑Montoya, M.S. (2024). Complex artificial intelligence models for energy sustainability in educational buildings. Scientific Reports 14, 15020. https://doi.org/10.1038/s41598-024-65727-5es_MX
dc.identifier.doihttps://doi.org/10.1038/s41598-024-65727-5
dc.identifier.issue15020es_MX
dc.identifier.journalScientific Reportses_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-3310-432Xes_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-6500-5994es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-7809-106Xes_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-1274-706Xes_MX
dc.identifier.urihttps://hdl.handle.net/11285/675766
dc.identifier.volume14es_MX
dc.language.isoenges_MX
dc.publisherSpringer Naturees_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.urlhttps://www.nature.com/articles/s41598-024-65727-5es_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTA::PEDAGOGÍA::TEORÍA Y MÉTODOS EDUCATIVOSes_MX
dc.subject.countryArgentina / Argentinaes_MX
dc.subject.keywordhigher educationes_MX
dc.subject.keywordeducational innovationes_MX
dc.subject.keywordeducational buildingses_MX
dc.subject.keywordenergy consumptiones_MX
dc.subject.keywordmachine learninges_MX
dc.subject.keywordR4C§TE
dc.subject.lcshEducationes_MX
dc.titleComplex artificial intelligence models for energy sustainability in educational buildingses_MX
dc.typeArtículo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024-Scientific_Reports.pdf
Size:
3.83 MB
Format:
Adobe Portable Document Format
Description:
Article PDF/A

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.17 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia