Generalisable computer vision methods for endoscopic surveillance and surgical interventions

dc.audience.educationlevelPúblico en general/General public
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorOchoa Ruiz, Gilberto
dc.contributor.authorAli, Mansoor
dc.contributor.catalogeremimmayorquin, emipsanchez
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Estado de México
dc.contributor.mentorAli, Sharib
dc.date.accepted2025-12-03
dc.date.accessioned2025-12-10T18:22:11Z
dc.date.embargoenddate2026-12
dc.date.issued2025-12-05
dc.descriptionhttps://orcid.org/0000-0002-9896-8727
dc.description.abstractAmong the most prevalent cancers in humans are gastrointestinal (GI) cancers, which mostly include cancers originating from the esophagus, stomach, and colon. Endoscopy for the upper gastrointestinal (GI) tract and colonoscopy for the lower side are considered the gold standard techniques for screening and removing precancerous lesions and abnormal tissue growth like polyps with high sensitivity. Prior research has shown higher polyp miss rates due to their peculiar morphology, variability in shape or size, and appearance. Also, endoscopic surgical interventions offer a minimally invasive approach for lesion removal or for the treatment of other diseases inside the abdominal and reproductive organs. Despite being patient-friendly in reducing trauma, hospitalisation times, and quicker post-operative recovery, minimally invasive surgeries may become complicated due to increased cognitive burden and reduced field-of-view for the clinicians. Computer-assisted detection (CADe), diagnosis (CADx), and interventions (CAI) have shown promise in providing useful support to the clinicians in both disease diagnosis and treatment, with immense potential to further improvements as the data availability becomes easier due to the endoscopes. Deep learning is increasingly being leveraged to develop methods for improving the pre-cancerous lesion detection and diagnosis, reducing the missing rates and providing intraoperative assistance to surgeons for better decision-making. However, current methods suffer from the domain shift problem, i.e., they work well on the same distribution of data and perform poorly on out-of-the-distribution data, thus lacking the real-world deployment capability. This thesis explores the impact of domain shift in endoscopic domain data on the current state-of-the-art methods, investigates the research gaps, and proposes methods for improved disease detection, surveillance, and surgical interventions with better generalisation capability. Specifically, we aim to use the feature space of the encoder networks of the state-of-the-art segmentation methods to learn discriminant information for better domain-invariant learning and improving the model generalisation on unseen out-of-the-distribution endoscopic datasets. We propose various methods for polyp segmentation in upper and lower GI tract data, full scene segmentation in laparoscopic surgery, and depth estimation in abdominal surgery. We also introduce an annotated multicentre segmentation dataset for evaluating model performance on generalisability and encouraging further research. Our results indicate improved out-of-distribution performance on multi-domain and cross-center endoscopic data. We will further work on extending the data to enhance its size and variability and explore new methods to increase robustness and generalisation performance.
dc.description.degreeDoctor of Philosophy in Computer Science
dc.format.mediumTexto
dc.identificator120320||320503||331499
dc.identifier.cvu1153381
dc.identifier.orcidhttps://orcid.org/0000-0002-4669-7267
dc.identifier.urihttps://hdl.handle.net/11285/705180
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfpublishedVersion
dc.rightsopenAccess
dc.rights.embargoreasonPor política las tesis de Ciencias Exactas y Ciencias de la Salud estarán en embargo por 1 año
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS DE CONTROL MÉDICO
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::MEDICINA INTERNA::GASTROENTEROLOGÍA
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRAS
dc.subject.keywordSurgical data science
dc.subject.keywordDomain generalisation
dc.subject.keywordDomain shift
dc.subject.keywordImage segmentation
dc.subject.keywordEndoscopy
dc.subject.lcshScience
dc.subject.lcshTechnology
dc.titleGeneralisable computer vision methods for endoscopic surveillance and surgical interventions
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
Ali_TesisDoctoradoOriginal.pdf
Size:
95.16 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado Original
Loading...
Thumbnail Image
Name:
AliMansoor_TesisDoctorado_pdfa.pdf
Size:
92.96 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Ali_DeclaraciondeAutoria.pdf
Size:
245.08 KB
Format:
Adobe Portable Document Format
Description:
Declaración de Autoría
Loading...
Thumbnail Image
Name:
Ali_HojadeFirmas.pdf
Size:
678.32 KB
Format:
Adobe Portable Document Format
Description:
Hoja de Firmas
Loading...
Thumbnail Image
Name:
Ali_CartaAutorizacion.pdf
Size:
99.59 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia