Data analytics to predict dropout in a MOOC course on energy sustainability

dc.contributor.affiliationInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.contributor.authorRiofrío Calderón, Gioconda
dc.contributor.authorRamírez Montoya, María Soledad
dc.contributor.authorRodríguez Conde, María José
dc.contributor.institutionUniversity of Barcelonaes_MX
dc.date.accessioned2021-09-22T15:38:42Z
dc.date.available2021-09-22T15:38:42Z
dc.date.issued2021-09-20
dc.description.abstractMassive open online courses (MOOCs) offer multiple advantages and vast training possibilities in diverse topics for millions of people worldwide to continue their education. However, dropout rates are high; thus, it is important to continue investigating the reasons for dropout to implement new and better strategies to increase course completions. The present study aimed to analyze the data of a MOOC class on energy sustainability to know why students drop out, identify causes, and predict dropouts in future courses. The method used was Knowledge Discovery in Databases to analyze association rules in the data. Using the Mexico X platform, an initial, validated survey instrument was applied to 1506 students enrolled in the MOOC course "Conventional Clean Energy and its Technology." The results indicated that association rules allowed identifying participants' behavior according to the type of responses with a determined confidence level. Also, the association rules were appropriate for working with a large amount of data. In the present case, results of up to 86% confidence were obtained based on the rules. This research can be of value to decision-makers, teachers, researchers, designers, and those interested in large-scale training environmentses_MX
dc.format.mediumTextoes_MX
dc.identificator4||58||5801es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-1274-706Xes_MX
dc.identifier.urihttps://hdl.handle.net/11285/639059
dc.language.isoenges_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTA::PEDAGOGÍA::TEORÍA Y MÉTODOS EDUCATIVOSes_MX
dc.subject.countryEspaña / Spaines_MX
dc.subject.keywordData analyticses_MX
dc.subject.keywordMOOCses_MX
dc.subject.keywordattritiones_MX
dc.subject.keywordmotivationes_MX
dc.subject.keywordonline educationes_MX
dc.subject.keywordeducational innovationes_MX
dc.subject.keywordhigher educationes_MX
dc.subject.lcshEducationes_MX
dc.titleData analytics to predict dropout in a MOOC course on energy sustainabilityes_MX
dc.typeItem publicado en memoria de congreso

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
210823-TEEM21-Riofrio-Ramirez&Rodriguez.pdf
Size:
468.23 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.15 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia