Extracting the embedded knowledge in class visualizations from artificial neural networks for applications in dataset and model compression and combinatorial optimization

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorTerashima Marín, Hugo
dc.contributor.authorAbreu Pederzini, Jose Ricardo
dc.contributor.catalogeremiggomez, emipsanchezes_MX
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.committeememberJuárez Jiménez, Julio Antonio
dc.contributor.committeememberRosales Pérez, Alejandro
dc.contributor.committeememberBendre, Nihar
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorOrtiz Bayliss, José Carlos
dc.date.accepted2024-05-15
dc.date.accessioned2024-07-07T07:09:21Z
dc.date.available2024-07-07T07:09:21Z
dc.date.embargoenddate2025-05-15
dc.date.issued2024-04-25
dc.descriptionhttps://orcid.org/0000-0002-5320-0773es_MX
dc.description.abstractArtificial neural networks are efficient learning algorithms, considered universal approxima-tors for solving numerous real-world problems in areas like computer vision, language processing, or reinforcement learning. To approximate any given function, neural networks train a large number of parameters that can go up to the millions or even billions in some cases. The large number of parameters and hidden layers in neural networks makes them hard to interpret, which is why they are often referred to as black boxes. In the quest to make artificial neural networks interpretable in the field of computer vision, feature visualization stands outas one of the most developed and promising research directions. While feature visualizations are a useful tool to gain insights about the underlying function learned by a neural network, they are still considered simply as visual aids that require human interpretation. In this doctoral work, we propose that feature visualizations—class visualizations in particular—are analogous to mental imagery in humans and contain the knowledge that the model extracted from the training data. Therefore, when correctly generated, class visualiza-tions can be considered as a conceptual compression of the data used to train the underlying model, resembling the experience of perceiving the actual training samples just as mental imagery resembles the real experience of perceiving the actual physical event. We present results showing that class visualizations can be considered a conceptual compression of the training data used to train the underlying model and present a methodology that enables the use of class visualizations as training data. To achieve this goal, we show that class visualizations can be used as training data to develop new models from scratch, achieving, in some cases, the same accuracy as the underlying model. Additionally, we explore the nature of class visualizations through different experiments to gain insights on what exactly class visualizations represent and what knowledge is embedded in them. To do so, we com- pare class visualizations to the class average image from the training data and demonstrate how the other classes that a model is trained on affect the shape and the knowledge embedded in a class visualization. We show that class visualizations are equivalent to visualizing the weight matrices of the output neurons in shallow network architectures and demonstrate that class visualizations can be used as pretrained convolutional filters. We experimentally show the potential of class visualizations for extreme model compression purposes. Finally, we present a novel methodology to enable the use of Artificial Neural Networks along with class visualizations for the solution of combinatorial optimization problems, such as the 2D Bin Packing Problem, by training an Artificial Neural Network to score potential solutions to a 2D BPP and then using that network to generate an ’optimal’ (local optima) solution to the problem by extracting a class visualization from the network via backpropagation to the network’s input. Even though we show the use of class visualizations as a tool to solve the bin packing problem, it is important to note that class visualizations have the potential to be used in the same way to solve other types of combinatorial optimization problems. For other types of combinatorial optimization problems, we just need to design a neural network that is capable of scoring solutions to the particular combinatorial optimization problem and extract class visualizations from such a network to generate a candidate solution to the problem.es_MX
dc.description.degreeDoctor of Philosophy in Computer Sciences.es_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120304es_MX
dc.identificator7||33||3304||120302es_MX
dc.identifier.citationAbreu Pederzini, J.R.(2024).Extracting the embedded knowledge in class visualizations from artificial neural networks for applications in dataset and model compression and combinatorial optimization.[Tesis doctorado].Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/675821es_MX
dc.identifier.doihttps://doi.org/10.60473/skvt-xh40
dc.identifier.orcidhttps://orcid.org/0000-0001-7893-3650es_MX
dc.identifier.urihttps://hdl.handle.net/11285/675821
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIALes_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::LENGUAJES ALGORÍTMICOSes_MX
dc.subject.keywordArtificial neural networkses_MX
dc.subject.keywordModel compressiones_MX
dc.subject.keywordDataset compressiones_MX
dc.subject.keywordCombinatorial optimization problemses_MX
dc.subject.keyword2D Bin packing problemes_MX
dc.subject.lcshTechnologyes_MX
dc.subject.otherTechnologyes_MX
dc.titleExtracting the embedded knowledge in class visualizations from artificial neural networks for applications in dataset and model compression and combinatorial optimizationes_MX
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
AbreuPederzini_TesisDoctoradopdfa.pdf
Size:
48.1 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
AbreuPederzini_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
552.06 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
Abreu Pederzini José Ricardo Carta Autorización.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia