A novel feature extraction methodology using Inter-Trial Coherence framework for signal analysis – A case study applied towards BCI

dc.audience.educationlevelOtros/Other
dc.contributor.advisorPonce Cruz, Pedro
dc.contributor.authorLópez Bernal, Diego
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberPonce Espinosa, Hiram
dc.contributor.committeememberLópez Caudana, Edgar Omar
dc.contributor.committeememberBustamante Bello, Martín Rogelio
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Ciudad de México
dc.contributor.mentorBalderas Silva, David Christopher
dc.date.accepted2024-12-02
dc.date.accessioned2024-12-30T05:36:32Z
dc.date.issued2024-11
dc.descriptionhttps://orcid.org/0000-0001-7035-5286
dc.description.abstractSignal classification in environments with low signal-to-noise ratio (SNR) presents a significant challenge across various fields, from industrial monitoring to biomedical appli cations. This work explores a novel methodology aimed at improving classification accuracy in such conditions, using EEG-based Brain-Computer Interfaces (BCIs) for inner speech decoding as a case study. EEG-based Brain-Computer Interfaces (BCIs) have emerged as a promising technology for providing communication channels for individuals with speech disabilities, such as those affected by amyotrophic lateral sclerosis (ALS), stroke, or other neurodegenerative diseases. Inner speech classification, a subset of BCI applications, aims to interpret and translate silent, inner speech into meaningful linguistic information. De spite the potential of BCIs, current methodologies for inner speech classification lack the accuracy needed for practical applications. This work investigates the use of inter-trial coherence (ITC) as a novel feature extraction technique to enhance the accuracy of in ner speech classification in EEG-based BCIs. The study introduces a methodology that integrates ITC within a complex Morlet time-frequency representation framework. EEG recordings from ten participants imagining four distinct words (up, down, right, and left) were processed and analyzed. Five different classification algorithms were evaluated: Ran dom Forest (RF), Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Linear Discriminant Analysis (LDA), and Naive Bayes (NB). The proposed method achieved no table classification accuracies of 75.70% with RF and 66.25% with SVM, demonstrating significant improvements over traditional feature extraction methods. These findings indi cate that ITC is a viable technique for enhancing the accuracy of inner speech classification in EEG-based BCIs. The results suggest practical implications for improving communica tion and navigation capabilities for individuals with ALS or similar conditions. This work lays the foundation for future research on phase-based feature extraction, opening new avenues for understanding the neural mechanisms underlying inner speech and advancing BCI systems’ accuracy and efficiency
dc.description.degreeDoctor of Science in Engineering
dc.format.mediumTexto
dc.identifier.citationLópez Bernal, D. (2024), A novel feature extraction methodology using Inter-Trial Coherence framework for signal analysis – A case study applied towards BCI [Tesis doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/702950
dc.identifier.cvu965143
dc.identifier.orcidhttps://orcid.org/0000-0002-3358-9574
dc.identifier.urihttps://hdl.handle.net/11285/702950
dc.identifier.urihttps://doi.org/10.60473/ritec.26
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::OTRAS ESPECIALIDADES TECNOLÓGICAS
dc.subject.keywordITC
dc.subject.keywordBCI
dc.subject.keywordInner speech
dc.subject.keywordEEG
dc.subject.keywordSignal processing
dc.subject.keywordFeature extraction
dc.subject.lcshTechnology
dc.titleA novel feature extraction methodology using Inter-Trial Coherence framework for signal analysis – A case study applied towards BCI
dc.typeTesis Doctorado / doctoral Thesis

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Diego López Bernal Tesis.pdf
Size:
33.15 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
Diego López Bernal Acta de Grado.pdf
Size:
570.35 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado
Loading...
Thumbnail Image
Name:
Diego López Bernal Carta Autorización.pdf
Size:
116.24 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia