Long-term activities segmentation using viterbi algorithm with a k-minimum-consecutive-states constraint

dc.creatorRamón Brena Pinero
dc.date2014
dc.date.accessioned2018-10-18T21:21:54Z
dc.date.available2018-10-18T21:21:54Z
dc.descriptionIn the last years, several works have made use of acceleration sensors to recognize simple physical activities like: walking, running, sleeping, falling, etc. Many of them rely on segmenting the data into fixed time windows and computing time domain and/or frequency domain features to train a classifier. A long-term activity is composed of a collection of simple activities and may last from a few minutes to several hours (e.g., shopping, exercising, working, etc.). Since long-term activities are more complex and their duration varies greatly, generating fixed length segments is not suitable. For this type of activities the segmentation should be done dynamically. In this work we propose the use of the Viterbi algorithm on a Hidden Markov Model with the addition of a k-minimum-consecutive-states constraint to perform the long-term activity recognition and segmentation from accelerometer data. This constraint allows the algorithm to perform a more informed search by incorporating prior knowledge about the minimum duration of each long-term activity. Our experiments showed good results for the activity recognition task and it was demonstrated that the accuracy was significantly increased by adding the k-minimum-consecutive-states constraint. © 2014 Published by Elsevier B.V.
dc.identifier.doi10.1016/j.procs.2014.05.460
dc.identifier.endpage560
dc.identifier.issn18770509
dc.identifier.startpage553
dc.identifier.urihttp://hdl.handle.net/11285/630426
dc.identifier.volume32
dc.languageeng
dc.publisherElsevier
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84902650027&doi=10.1016%2fj.procs.2014.05.460&partnerID=40&md5=64dbb041280f241fbb50b1c241fc3e67
dc.relationInvestigadores
dc.relationEstudiantes
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceProcedia Computer Science
dc.subjectAlgorithms
dc.subjectComplex networks
dc.subjectEnergy conservation
dc.subjectFrequency domain analysis
dc.subjectHidden Markov models
dc.subjectImage segmentation
dc.subjectMarkov processes
dc.subjectPattern recognition
dc.subjectAcceleration sensors
dc.subjectAccelerometer data
dc.subjectActivity recognition
dc.subjectContext- awareness
dc.subjectFrequency domains
dc.subjectIncorporating prior knowledge
dc.subjectPhysical activity
dc.subjectViterbi
dc.subjectViterbi algorithm
dc.subject.classification7 INGENIERÍA Y TECNOLOGÍA
dc.titleLong-term activities segmentation using viterbi algorithm with a k-minimum-consecutive-states constraint
dc.typeConferencia
refterms.dateFOA2018-10-18T21:21:54Z

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9784227.pdf
Size:
225.05 KB
Format:
Adobe Portable Document Format
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia