Development of biosensor-based diagnostic systems for breast cancer using biorecognition engineering techniques and machine learning approaches for biomarker discovery

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorDe Donato Capote, Marcos
dc.contributor.authorMayoral Peña, Kalaumari
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberArtzi, Natalie
dc.contributor.committeememberVíctor Manuel Treviño Alvarado
dc.contributor.committeememberAlfaro Ponce, Mariel
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorGonzález Peña, Omar Israel
dc.date.accepted2025-07-25
dc.date.accessioned2025-08-15T23:10:03Z
dc.date.issued2025-07-25
dc.descriptionhttps://orcid.org/0000-0001-8860-6020
dc.description6701604653
dc.description31335
dc.description.abstractCancer is the second cause of mortality worldwide, while breast cancer is the second leading cause of global female mortality. Diagnosing and treating breast cancer patients at early stages is relevant for successful treatment and increasing the patient's survival rate. However, early diagnosis of this complex disease is challenging, especially in populations with limited healthcare services. As a result, developing more accessible and accurate diagnostic tools is necessary. The development of low-cost biosensor technologies that have been relevant in the last two decades, but these technologies are still in the process of reaching maturity. For these reasons, we decided to study two promising technologies that can be implemented in cancer biosensor development: 1) biorecognition engineering techniques; 2) machine learning approaches for biomarker discovery. The first technology comprises alternative techniques to generate molecules and molecule-based scaffolds with similar properties to those presented by antibodies. In this study, we presented a systematic analysis of the scientific peer-reviewed literature in the Web of Science from the last two decades to present the fundamentals of this technology and address questions about how it has been implemented in biosensors for cancer detection. The three techniques analyzed were molecularly imprinted polymers, recombinant antibodies, and antibody mimetic molecules. The PRISMA methodology included 131 scientific from 2019 to 2021 for further analysis. The results showed that antibody mimetic molecules technology was the biorecognition technology with the highest number of reports. The most studied cancer types were: multiple, breast, leukemia, colorectal, and lung. Electrochemical and optical detection methods were the most frequently used. Finally, the most analyzed biomarkers and cancer entities in the studies were carcinoembryonic antigen, MCF-7 cells, and exosomes. For the second technology, we developed a novel bioinformatics pipeline that uses machine learning algorithms (MLAs) to identify genetic biomarkers for classifying breast cancer into non-malignant, non-triple-negative, and triple-negative categories. Five Gene Selection Approaches (GSAs) were employed: LASSO (Least Absolute Shrinkage and Selection Operator), Membrane LASSO, Surfaceome LASSO, Network Analysis, and Feature Importance Score (FIS). We implemented three factorial designs to assess the impact of MLAs and GSAs on classification performance (F1 Macro and Accuracy) in both cell lines and patient samples. Using Recursive Feature Elimination (RFE) and Genetic Algorithms (GAs) in the first four GSAs, we reduced the gene count to eight per GSA while maintaining an F1 Macro ≥ 80%. Consequently, 95.5% of our treatments with these gene sets achieved an F1 Macro or Accuracy ranging from 70.3% to 97.2%. As a result, 37 different genes were obtained. We analyzed the 37 genes for their predictive power in terms of five-year survival and relapse-free survival and compared them with genes from four commercial panels. Notably, thirteen genes (MFSD2A, TMEM74, SFRP1, UBXN10, CACNA1H, ERBB2, SIDT1, TMEM129, MME, FLRT2, CA12, ESR1, and TBC1D9) showed significant predictive capabilities for up to five years of survival. TBC1D9, UBXN10, SFRP1, and MME were significant for relapse-free survival after five years. The FOXC1, MLPH, FOXA1, ESR1, ERBB2, and SFRP1 genes also matched those described in commercial panels. The influence of MLA on F1 Macro and Accuracy was not statistically significant. Altogether, the genetic biomarkers identified in this study hold potential for use in biosensors aimed at breast cancer diagnosis and treatment. We concluded that both technologies had demonstrated their utility in cancer biosensor development for vulnerable populations with limited access to healthcare. However, further studies are required, and a long road exists to establish a commercial biosensor. For this reason, we generated a research proposal to develop a biosensor integrating this study's information in an optical and electrochemical sensing platform. Also, some designs of this biosensor and preliminary results are presented.
dc.description.degreeDoctor of Philosophy in Biotechnology
dc.format.mediumTexto
dc.identificator230221
dc.identificator933149
dc.identificator320101
dc.identificator329999
dc.identifier.citationMayoral Peña, K. (2025). Development of biosensor-based diagnostic systems for breast cancer using biorecognition engineering techniques and machine learning approaches for biomarker discovery [Tesis doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703988
dc.identifier.doihttps://doi.org/10.1016/j.compbiomed.2025.110584
dc.identifier.doihttps://doi.org/10.3390/cancers14081867
dc.identifier.orcidhttps://orcid.org/0000-0003-2652-3697
dc.identifier.scopusid57222017385
dc.identifier.urihttps://hdl.handle.net/11285/703988
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyesp
dc.relationTecnológico de Monterrey, CONACYT, Brigham and Women's Hospital, Harvard Medical School, and Massachusetts Institute of Technology
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.subject.classificationBIOLOGÍA Y QUÍMICA::QUÍMICA::BIOQUÍMICA::BIOLOGÍA MOLECULAR
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRAS
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::CIENCIAS CLÍNICAS::ONCOLOGÍA
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::OTRAS ESPECIALIDADES MÉDICAS::OTRAS
dc.subject.classificationBIOLOGÍA Y QUÍMICA::CIENCIAS DE LA VIDA::BIOLOGÍA MOLECULAR::BIOLOGÍA MOLECULAR
dc.subject.keywordCancer diagnosis
dc.subject.keywordBiosensors
dc.subject.keywordBiorecognition engineering
dc.subject.keywordMachine learning
dc.subject.keywordArtificial intelligence
dc.subject.keywordBiomarker discovery
dc.subject.keywordBreast Cancer
dc.subject.keywordCancer classification
dc.subject.lcshTechnology
dc.subject.lcshScience
dc.titleDevelopment of biosensor-based diagnostic systems for breast cancer using biorecognition engineering techniques and machine learning approaches for biomarker discovery
dc.typeTesis de Doctoradoesp

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
MayoralPena_TesisDoctorado_pdfa.pdf
Size:
3.97 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
MayoralPena_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
438.88 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
MayoralPena_CurriculumVitae_pdfa.pdf
Size:
179.97 KB
Format:
Adobe Portable Document Format
Description:
Curriculum Vitae
Loading...
Thumbnail Image
Name:
MayoralPena_CartaAutorizacion_pdfa.pdf
Size:
627.35 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia