Enhancing video-based human action recognition: leveraging knowledge distillation for improved training efficiency and flexibility

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorGonzález Mendoza, Miguel
dc.contributor.advisor123361
dc.contributor.advisorhttps://orcid.org/0000-0001-6451-9109
dc.contributor.authorCamarena Trinidad, Luis Fernando
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberOchoa Ruiz, Gilberto
dc.contributor.committeememberPérez Suárez, Ariel
dc.contributor.committeememberMarín Hernández, Antonio
dc.contributor.departmentSchool of Engineering and Sciencees_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.contributor.mentorChang Fernández, Leonardo
dc.date.accepted2024-05
dc.date.accessioned2025-10-06T23:46:00Z
dc.date.issued2024-05
dc.descriptionhttps://orcid.org/0000-0001-6451-9109
dc.description.abstractArtificial Intelligence (AI) stands out for its transformative potential, revolutionizing sectors from healthcare and transport to e-commerce and industrial maintenance. A core task of AI applications is to be able to understand human behavior in videos, which is the foundation in areas like surveillance, content monitoring, patient care, and gaming. Training a model to recognize human actions implies a highly complex computational process in which modern strategies use a knowledge transfer approach to reduce computational complexity. However, they come with challenges, especially in flexibility and efficiency. Existing solutions are limited in functionality, relying heavily on pretrained model architectures, which can restrict their applicability in diverse scenarios. Our research, titled ”Enhancing Video-Based Human Action Recognition: Leverag- ing Knowledge Distillation for Improved Training Efficiency and Flexibility”, proposes a framework that uses knowledge distillation (KD) to guide the training of self-supervised models. This framework has significant practical implications, as it improves classification accuracy, accelerates model convergence, and increases model flexibility under regular and limited data scenarios. We tested our method on the UCF101 dataset, varying the balanced proportions from 100 % to 2 %, and measured their performance at different training stages. Our results show that our approach outperforms traditional training methods, maintaining classification accuracy while improving the convergence rate. In addition to the efficiency of the model training, our methods enable cross-architecture adaptability, allowing model customization for various applications. In data-scarce environments, KD maintains its robustness, proving invaluable for applications where gathering extensive labeled data is challenging or expensive.es_MX
dc.description.degreeDoctor en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator120304||330417||120318
dc.identifier.citationCamarena, F., Gonzalez-Mendoza, M., & Chang, L. (2024).Enhancing Video-Based Human Action Recognition: Leveraging Knowledge Distillation for Improved Training Efficiency and Flexibility. Tecnologico de Monterrey.es_MX
dc.identifier.cvu815917es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-0888-2098
dc.identifier.scopusid57202785338
dc.identifier.urihttps://hdl.handle.net/11285/704235
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS EN TIEMPO REAL
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS DE INFORMACIÓN, DISEÑO Y COMPONENTES
dc.subject.keywordAction Recognitiones_MX
dc.subject.keywordSelf-supervised video-based human action recognitiones_MX
dc.subject.keywordVideo Understandinges_MX
dc.subject.keywordknowledge transferes_MX
dc.subject.lcshTechnologyes_MX
dc.titleEnhancing video-based human action recognition: leveraging knowledge distillation for improved training efficiency and flexibility
dc.typeTesis Doctorado / doctoral Thesises_MX

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
CamarenaTrinidad_TesisDoctorado.pdf
Size:
19.37 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
CamarenaTrinidadLuisFernado_TesisOriginal
Size:
20.66 MB
Format:
Adobe Portable Document Format
Description:
Tesis Original
Loading...
Thumbnail Image
Name:
CamarenaTrinidad_ActaGrado.pdf
Size:
239.88 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado
Loading...
Thumbnail Image
Name:
CamarenaTrinidad_CartaAutorizacion_pdf
Size:
137.9 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorizacion

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia