Conferencia

Overcoming uncertainty on video-on-demand server design by using self-similarity and principal component analysis

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Description

In this paper we use a small amount of video files to design a video-on-demand server. We use the available video information to overcome uncertainties such as future user preference, type of video file (movie, cartoon, documentary), video compression technique, etc. Using principal component analysis we overcome such uncertainties by reducing the dimensionality of the video data, creating a new video trace that captures statistical characteristics of most video files; we call this the characteristic video trace. Using the Pareto probability distribution for the size of the video frames (of the characteristic video trace) and self-similarity we develop a non-asymptotic model which predicts memory buffer size for a required quality of service. By obtaining the necessary parameters for the mathematical model from the characteristic video trace we could design the server without more information. © 2013 The Authors. Published by Elsevier B.V.

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia