Decoding of motor information from noninvasive electroencephalographic signals for brain-computer interfaces

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorAntelis Ortíz, Javier Mauricio
dc.contributor.authorHernández Rojas, Luis Guillermo
dc.contributor.catalogerqro /|bqrotbecerraes_MX
dc.contributor.committeememberCaraza Camacho, Ricardo
dc.contributor.committeememberCantillo Negrete, Jessica
dc.contributor.committeememberMartínez Mozos, Oscar
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.contributor.mentorMendoza Montoya, Omar
dc.date.accessioned2022-03-01T22:41:04Z
dc.date.available2022-03-01T22:41:04Z
dc.date.created2020
dc.date.issued2021-01-29
dc.descriptionCVU 561240es_MX
dc.description.abstractBrain-Computer Interfaces (BCIs) are emerging assistive technologies that provide an artificial communication pathway between the brain and the external world. These systems translate a mental task performed by the user into commands to control external devices using brain signals recorded with invasive or noninvasive techniques. This is remarkably interesting for different applications related with neuromotor rehabilitation field, for example, BCI systems for neurorehabilitation therapies where BCIs provides patients with motor impairments with a non-muscular communication channel that could be used to activate a robot-assisted rehabilitation device. However, there are other applications not related to the neurorehabilitation field where this technology provides an enhancement for the communication between the user and the its environment. An example of this is the BCI’s for automotive applications, where BCI technology is applied as a part of Advanced Driving Assistance Systems to avoid crash vehicle situations. Irrespective of the type of application, movement-related BCI systems use the motor imagery (MI) paradigm as the mental task that the user performs and which the system detects and classifies by generating commands to drive external devices Despite the success of Motor Imagery-based BCI systems, there are some characteristics of these interfaces that are susceptible to be improved. First, to improve the performance of mental task detection, novel classification models can be explored to compare their performance with the conventional classification models used in BCI (such as Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM)). Secondly, there are applications in which the motor imagery paradigm has limitations that avoid the BCI system to be able to detect multiple mental motor tasks related to diverse movements generated by the same limb. In addition, the MI paradigm is not fully adaptable to detect intentions to execute sudden movements, which is important for applications where the objective of BCI is to support and complement the rehabilitation therapies for people with the ability to recover their physical motor functions. Finally, the validation of neurorehabilitation therapies based on BCI online for end users (people with motor disabilities). It is necessary to evaluate the usefulness of this technology in the rehabilitation of patients with motor disabilities. This PhD thesis investigates the detection of information related to movements from non-invasive EEG signals exploring potential solutions to the limitations of conventional Motor BCI systems. The first study explores novel classification models as those based on deep learning which could improve the BCI system robustness and performance. This study aims to compare classical and Deep Neural Networks (DNN) algorithms for the recognition of Motor Imagery (MI) tasks from electroencephalographic (EEG) signals. The second study investigates the detection of emergency braking from driver’s electroencephalographic (EEG) signals that precede the brake pedal actuation. EEG signals were classified using support vector machines (SVM) and convolutional neural networks (CNN) in order to discriminate between braking intention and normal driving. The third study assess the feasibility of recognizing two rehabilitative right upper-limb movements from pre-movement EEG signals. These rehabilitative movements were performed self-selected and self-initiated by the users using a motor rehabilitation robotic device. We proposes diverse anticipatory detection scenarios that discriminate EEG signals corresponding to non-movement state and movement intentions of two same-limb movements. Finally, the last study is focused on the development of a BCI-driven functional electro-stimulation system (FES) aimed at neurorehabilitation of the upper limbs of patients with spinal cord injuries (SCI). Furthermore, clinical benefits of the BCI-FES system in SCI patients are explored by estimating quantitative EEG parameters for motor rehabilitation.es_MX
dc.description.degreeDoctor of Philosophy in Engineering Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120320es_MX
dc.identifier.citationHernandez-Rojas, L.G. (2021). Decoding of motor information from noninvasive electroencephalographic signals for brain-computer interfaces (Doctoral dissertation, Instituto Tecnológico y de Estudios Superiores de Monterrey, Estado de México, México).es_MX
dc.identifier.cvu662849es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-6080-5300es_MX
dc.identifier.urihttps://hdl.handle.net/11285/645421
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.urlhttps://www.researchgate.net/profile/Luis-Hernandez-Rojases_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS DE CONTROL MÉDICOes_MX
dc.subject.keywordBrain-Computer Interfaceses_MX
dc.subject.keywordelectroencephalographices_MX
dc.subject.keywordMovementes_MX
dc.subject.keywordBCIes_MX
dc.subject.keywordMotor Imageryes_MX
dc.subject.keywordRehabilitation therapyes_MX
dc.subject.lcshSciencees_MX
dc.titleDecoding of motor information from noninvasive electroencephalographic signals for brain-computer interfaceses_MX
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
DCI_PhD_Thesis_LuisGuillermoHernandezRojas.pdf
Size:
12.53 MB
Format:
Adobe Portable Document Format
Description:
Thesis
Loading...
Thumbnail Image
Name:
6 Acta interna para Examen de grado-Escolares_LUIS GUILLERMO HERNÁNDEZ ROJAS.pdf
Size:
983.37 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas (acta de grado)
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
189.15 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia