Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551014

Pertenecen a esta colección Tesis y Trabajos de grado de los Doctorados correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis doctorado / doctoral thesis
    Convolutional-morphological neural network applied to medical imaging
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2023-10-17) Canales Fiscal, Martha Rebeca; Tamez Peña, José Gerardo; emipsanchez; Treviño, Victor Manuel; Martínez Torteya, Antonio; Helguera Martínez, María; Martínes Ledesma, Emmanuel; School of Engineering and Sciences; Campus Monterrey
    Mathematical morphology, a versatile technique frequently employed in image processing, finds wide-ranging applications in tasks such as segmentation, filtering, compression, edge detection, and feature extraction. In this study, we focus on the latter application and evaluate the effectiveness of combining mathematical morphology operations with convolution in a deep learning framework, comparing it with handcrafted features paired with traditional machine learning classifiers. To this end, we introduce the Morphological and Convolutional Neural Network (MCNN) trained with Extreme Learning Machines (ELM). Our methodology encompasses an internal assessment, a comparison with three commonly referenced Convolutional Neural Networks (CNNs) - ResNet-18, ShuffleNet-V2, and MobileNet-V2, and an evaluation of performance across four distinct optimizers - ELM, SGD, ADAM, and RProp. We conduct four classification tasks using both the MCNN approach and classic machine learning techniques for glaucoma, melanoma, breast cancer, and COVID-19 detection, leveraging the ORIGA, ISIC, RSNA, and Thermal-Covid datasets, respectively. While the classification performance for glaucoma and melanoma proved reliable, with accuracies of 0.73 (0.67, 0.80) 95% CI and 0.88 (0.84, 0.92) 95% CI, breast cancer and COVID-19 exhibited random classification, yielding accuracies of 0.50 (0.45, 0.57) 95% CI and 0.52 (0.47, 0.57) 95% CI. In this work, we offer several contributions: a deeper exploration of mathematical morphology as a feature extractor for medical diagnosis using deep learning, the introduction of the MCNN method incorporating these operations, an analysis of its strengths and weaknesses, a comparative assessment against conventional handcrafted features, and an examination of performance variations with different optimizers when applying morphological operations.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia