Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551014

Pertenecen a esta colección Tesis y Trabajos de grado de los Doctorados correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de doctorado
    Robust unsupervised statistical learning for the identification and prediction of the risk profiles
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-11-15) Nezhadmoghadam, Fahimeh; TAMEZ PEÑA, JOSE GERARDO; 67337; Tamez Peña, José Gerardo; puemcuervo, emipsanchez; Treviño Alvarado, Víctor Manuel; Martínez Ledesma, Juan Emmanuel; Santos Díaz, Alejandro; Martínez Torteya, Antonio; School of Engineering and Sciences; Campus Monterrey
    The discovery of disease subtypes substantially impacts the selection of patient-specific treatment with implications for long-term survival and disease-related outcomes. Given the heterogeneity of disease phenotypes and the demand for a clear understanding of the features associated with the onset of the disease, this discovery of clinically relevant disease subtypes is not straightforward. Consequently, it is essential for clinical researchers that techniques of disease subtyping be robust and reproducible in clinical settings. This dissertation aims to provide a simple clinical tool that predicts the specific disease subtype of a patient. Therefore a robust unsupervised statistical learning method is presented, developed, and validated that analyzes multidimensional datasets and returns reproducible, robust unsupervised clustering Models of the identified patient subtypes. Unsupervised clustering techniques could realistically model disease heterogeneity. Each cluster represents a distinct homogenous disease subtype discovered through the analysis of the predicted Class-Co-Association Matrix (PCCAM) created by randomly resampling research data. Primarily, there is a PCCAM resulting from the test results of replicated random-crossvalidation of unsupervised clustering that depicts the joint probability of subjects-pairs belonging to the same cluster; thus, PCCAM can result in the discovery of all the reproducible clusters present in the studied data. We applied the proposed methodology to various diseases to discover subtypes such as Alzheimer's disease, Covid-19, and acute myeloid leukemia cancer with different data types. Our findings showed the proposed unsupervised approach could discover the subtypes of disease with statistical differences. Also, the characterization of discovered subgroups indicated other substantial differences in some features we considered studying amongst subgroups.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia