Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551014

Pertenecen a esta colección Tesis y Trabajos de grado de los Doctorados correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de doctorado
    Reinforcement learning for controlling continuous systems with uncertain dynamics and restricted states using robust neural dynamic programming
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2025-06) Guarneros Sandoval, Israel Alejandro; Chairez Oria, Jorge Isaac; emimmayorquin; Fuentes Aguilar, Rita Quetziquel; Carlos Renato Vázquez Topete; Roman Flores, Armando; Escuela de Ingeniería y Ciencias; Campus Monterrey; Ballesteros Escamilla, Mariana Felisa
    This dissertation presents a comprehensive investigation into the use of advanced neural network architectures and control methodologies for modelling and controlling complex robotic systems, with a primary focus on the Stewart Gough platform. Central to this work is developing and validating novel Differential Neural Networks (DNN) architectures designed to improve the fidelity of system identification in scenarios characterized by non-linear and time-varying dynamics. Through simulation and experimental validation, a new State-Input DNN (SIADNN) demonstrated superior identification accuracy over traditional DNN, particularly in capturing dynamic behaviours where system states non-trivially influence system responses. Beyond identification, the SIADNN architecture proves to be well-suited for applications in model predictive control and adaptive control frameworks, eliminating the need for extensive linearization and reducing computational burden. Its capability to model systems with time-varying parameters enables more robust and scalable solutions in control design. Additionally, the dissertation explores integrating the DNN model into reinforcement learning (RL) pipelines, leveraging the MATLAB Reinforcement Learning Toolbox to optimize control strategies. Experimental results confirm the efficacy of this hybrid approach in enhancing trajectory tracking and overall control performance of the Stewart platform. The synergy between neural identification and learning-based control highlighted in this work offers a robust framework for dealing with uncertain, high-dimensional robotic systems. The findings advocate for the broader adoption of hybrid neural architectures in intelligent control applications and pave the way for future research in real-time adaptive and data-driven control strategies.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia